Targeted disruption of the multidrug and toxin extrusion 1 (mate1) gene in mice reduces renal secretion of metformin.
نویسندگان
چکیده
Multidrug and toxin extrusion 1 (MATE1/SLC47A1) is important for excretion of organic cations in the kidney and liver, where it is located on the luminal side. Although its functional and regulatory characteristics have been clarified, its pharmacokinetic roles in vivo have yet to be elucidated. In the present study, to clarify the relevance of MATE1 in vivo, targeted disruption of the murine Mate1 gene was carried out. The lack of Mate1 expression in the kidney and liver was confirmed by reverse transcription-polymerase chain reaction and Western blot analysis. The mRNA levels of other organic cation transporters such as Octs did not differ significantly between wild-type [Mate1(+/+)] and Mate1 knockout [Mate1(-/-)] mice. It is noteworthy that the Mate1(-/-) mice were viable and fertile. Pharmacokinetic characterization was carried out using metformin, a typical substrate of MATE1. After a single intravenous administration of metformin (5 mg/kg), a 2-fold increase in the area under the blood concentration-time curve for 60 min (AUC(0-60)) of metformin in Mate1(-/-) mice was observed. Urinary excretion of metformin for 60 min after the intravenous administration was significantly decreased in Mate1(-/-) mice compared with Mate1(+/+) mice. The renal clearance (CL(ren)) and renal secretory clearance (CL(sec)) of metformin in Mate1(-/-) mice were approximately 18 and 14% of those in Mate1(+/+) mice, respectively. This is the first report to demonstrate an essential role of MATE1 in systemic clearance of metformin.
منابع مشابه
Renal tubular secretion of varenicline by multidrug and toxin extrusion (MATE) transporters.
Multidrug and toxin extrusion (MATE) 1 and MATE2-K, H(+)/organic cation antiporters, are located at the brush-border membrane of renal proximal tubules. The present study aimed to clarify the role of MATE transporters in tubular secretion of varenicline. Varenicline at a dose of 5 mg/kg was administered to wild-type and Mate1-knockout mice via the jugular vein, and its uptake was measured by hi...
متن کاملDisruption of multidrug and toxin extrusion MATE1 potentiates cisplatin-induced nephrotoxicity.
Multidrug and toxin extrusion 1 (MATE1/SLC47A1) is expressed in the brush-border membrane of renal proximal tubules and mediates the efflux of cationic drugs. In the present study, the role of MATE1 in the nephrotoxicity of cisplatin was investigated in vivo and in vitro. Cisplatin (15mg/kg) was administered intraperitoneally to wild-type (Mate1(+/+)) and Mate1 knockout (Mate1(-/-)) mice. Lifes...
متن کاملHuman multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter: functional characterization, interaction with OCT2 (SLC22A2), and single nucleotide polymorphisms.
Renal elimination of a number of cationic compounds is thought to be mediated by the organic cation transporter 2 (OCT2, SLC22A2), a drug uptake transporter expressed at the basolateral domain of renal tubular cells. Recently, the key efflux transporter for the secretion organic cations was identified as an electroneutral H(+)/organic cation exchanger termed the multidrug and toxin extrusion (M...
متن کاملDeficiency of Multidrug and Toxin Extrusion 1 Enhances Renal Accumulation of Paraquat and Deteriorates Kidney Injury in Mice
Multidrug and toxin extrusion 1 (MATE1/solute carrier 47A1) mediates cellular transport of a variety of structurally diverse compounds. Paraquat (PQ), which has been characterized in vitro as a MATE1 substrate, is a widely used herbicide and can cause severe toxicity to humans after exposure. However, the contribution of MATE1 to PQ disposition in vivo has not been determined. In the present st...
متن کاملReduced renal clearance of a zwitterionic substrate cephalexin in MATE1-deficient mice.
Multidrug and toxin extrusion 1 (MATE1/solute carrier 47A1) mediates the transport of not only organic cations but also zwitterions such as cephalexin. However, the contribution of MATE1 to tubular secretion of cephalexin in vivo has not been elucidated. In the present study, we carried out transport experiments of cephalexin via MATE1 and performed pharmacokinetic analyses of cephalexin in Mat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 75 6 شماره
صفحات -
تاریخ انتشار 2009